Математика 6 Проверочная 1 В1

Контрольная работа № 1 по математике 6 класс с решениями и ответами «Вычисления и построения» Вариант 1 для УМК Виленкин Базовый уровень с 2025 года. Цитаты из учебного пособия использованы в учебных целях для семейного и домашнего обучения. Код материалов: Математика 6 Проверочная 1 В1.
Вернуться к Списку контрольных (в ОГЛАВЛЕНИЕ)

Математика 6 класс (Виленкин)
Проверочная № 1 Вариант 1

Математика 6 Проверочная 1 В1

Решения и ответы на Вариант 1

№ 1. Найдите среднее арифметическое чисел 36,2; 38,6; 37; 39,4.
Решение. Среднее арифметическое = (36,2 + 38,6 + 37 + 39,4) / 4.
Сумма чисел: 36,2 + 38,6 = 74,8; 74,8 + 37 = 111,8; 111,8 + 39,4 = 151,2.
151,2 / 4 = 37,8.
ОТВЕТ: 37,8.

№ 2. В доме имеется 300 квартир трёх видов: однокомнатные, двухкомнатные и трёхкомнатные. На круговой диаграмме (рис. 61) приведено распределение количества квартир по их виду (в процентах).

Решение:
1) Процент двухкомнатных квартир = 100% – (30% + 25%) = 45%.
2) Количество однокомнатных квартир = 300 × 0,3 = 90.
ОТВЕТ: 1) 45%; 2) 90.

№ 3. Руда содержит 96 кг железа. Какова масса руды, если железа в ней содержится 8 %?
Решение:
Масса руды = (96 / 8) × 100 = 12 × 100 = 1200 (кг).
ОТВЕТ: 1200 кг.

№ 4. Равнобедренный и равносторонний треугольники имеют равные периметры. Основание равнобедренного треугольника равно 9 см, а боковая сторона — 12 см. Найдите сторону равностороннего треугольника.
Решение:
Периметр равнобедренного треугольника = 9 + 12 + 12 = 33 (см).
Периметр равностороннего треугольника равен 33 см, значит, его сторона = 33 / 3 = 11 (см).
ОТВЕТ: 11 см.

№ 5. Множество А состоит из чисел, которые больше 22, но меньше 37 и делятся нацело на 4. Множество В состоит из чисел, которые больше 20, но меньше 38 и делятся нацело на 3.
Решение:
1) Множество А: числа, кратные 4, из интервала (22; 37) ⇒ 24, 28, 32, 36.
Множество В: числа, кратные 3, из интервала (20; 38) ⇒ 21, 24, 27, 30, 33, 36.
2) Пересечение А∩В = {24, 36}.
Объединение А∪В = {21, 24, 27, 28, 30, 32, 33, 36}.
ОТВЕТ: 1) А = {24, 28, 32, 36}, В = {21, 24, 27, 30, 33, 36}; 2) А∩В = {24, 36}, А∪В = {21, 24, 27, 28, 30, 32, 33, 36}.

№ 6. Автомобиль ехал 3 ч со скоростью 58,4 км/ч и 4 ч со скоростью 61,2 км/ч. Найдите среднюю скорость автомобиля на всём пути.
Решение:
Путь за первые 3 ч: 3 × 58,4 = 175,2 (км).
Путь за следующие 4 ч: 4 × 61,2 = 244,8 (км).
Общий путь: 175,2 + 244,8 = 420 (км).
Общее время: 3 + 4 = 7 (ч).
Средняя скорость = 420 / 7 = 60 (км/ч).
ОТВЕТ: 60 км/ч.

№ 7. За первый месяц отремонтировали 65 % дороги, за второй — 60 % оставшегося, а за третий — остальные 28 км. Сколько километров дороги отремонтировали за три месяца?
Решение: Пусть вся дорога = x км.
После первого месяца осталось: x ─ 0,65x = 0,35x км.
Во второй месяц отремонтировали 0,6 × 0,35x = 0,21x км.
После двух месяцев осталось: 0,35x ─ 0,21x = 0,14x км.
По условию 0,14x = 28 ⇒ x = 28 / 0,14 = 200 км.
За три месяца отремонтировали всю дорогу, т.е. 200 км.
ОТВЕТ: 200 км.

Вариант 2 смотрите тут: ПР-01 Вариант 2

 


Вы смотрели: Контрольная работа по математике 6 класс с ответами для УМК Виленкин Базовый уровень с 2025 года. Код материалов: Математика 6 Проверочная 1 В1.

Вернуться к Списку контрольных (в ОГЛАВЛЕНИЕ)

(с) Цитаты из учебного пособия «Математика : 6-й класс : базовый уровень : дидактические материалы / Е. В. Буцко, А. Г. Мерзляк, М. С. Якир. — Москва : Просвещение, 2025» использованы в учебных целях для семейного и домашнего обучения.

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней