Самостоятельная работа № 16 по алгебре в 9 классе «Решение неравенств второй степени с одной переменной» с ответами (Варианты 1, 2). Дидактические материалы для учителей, учащихся и родителей. Упражнения в работе даны с избытком, поэтому каждый учитель самостоятельно определяет количество необходимых заданий в работе. Алгебра 9 Макарычев С-16.
Вернуться к Списку работ (в ОГЛАВЛЕНИЕ)
АЛГЕБРА 9 класс (Макарычев)
Самостоятельная работа № 16.
СР-16. Вариант 1 (задания)
ОТВЕТЫ на Вариант 1
№ 1. Для каждой из парабол у = 2x2 – х – 15 и у = –3x2 + 5х + 28:
а) определите направление ее ветвей;
б) найдите координаты точек пересечения параболы с осью х;
в) изобразите схематически график;
г) найдите по графику множество значений аргумента, при которых у < 0 и при которых у > 0.
ОТВЕТ:
№ 2. Решите неравенство:
а) x2 – 8x + 15 > 0; б) 3x2 + 11х – 4 < 0;
в) x2 – 9 > 0; г) 2х – x2 > 0.
ОТВЕТ:
№ 3. Найдите множество решений неравенства:
а) x2 ≤ 4; б) x2 > 5; в) 2x2 ≥ х; г) –3x < 6x2.
ОТВЕТ:
№ 4. Докажите, что при любом значении а верно неравенство:
а) 5а2 – 2а + 1 > 0; б) 6а < а2 + 10.
ОТВЕТ:
№ 5. Найдите область определения функции:
а) у = √[x2 – 14x + 40]; б) у = 9/√[8x – 2x2]; в) y = 1/|x| + 1/|x-3|.
ОТВЕТ:
№ 6. При каких значениях с множеством решений неравенства x2 – 6х + с < 0 является промежуток: а) (1; 5); б) (–∞; +∞)?
ОТВЕТ:
№ 7. Решите неравенство (x2 – 12x + 35) / (х – 6)2 < 0.
ОТВЕТ:
СР-16. Вариант 2 (задания)
ОТВЕТЫ на Вариант 2
№ 1. Для каждой из парабол у = 3x2 + х – 17 у = –2x2 – 5x + 12:
а) определите направление ее ветвей;
б) найдите координаты точек пересечения параболы с осью х;
в) изобразите схематически график;
г) найдите по графику множество значений аргумента, при которых у > 0 и при которых у < 0.
ОТВЕТ:
№ 2. Решите неравенство:
а) x2 – 10x + 21 > 0; б) 4x2 + 11х – 3 < 0;
в) x2 – 16 > 0; г) 5х – x2 > 0.
ОТВЕТ:
№ 3. Найдите множество решений неравенства:
а) x2 ≤ 9; б) x2 > 7; в) 3x2 ≥ x; г) –4х < 8x2.
ОТВЕТ:
№ 4. Докажите, что при любом значении b верно неравенство:
а) 7b2 – 4b + 1 > 0; б) 8b < b2 + 17.
ОТВЕТ:
№ 5. Найдите область определения функции:
a) y = √[x2 – 18x + 72];
б) у = 7 / √[6х – 3x2]; в) у = 1/|x| – 1/|x–5|.
ОТВЕТ:
№ 6. При каких значениях с множеством решений неравенства x2 – 8x + с < 0 является промежуток: а) (3; 5); б) (–∞; +∞)?
ОТВЕТ:
№ 7. Решите неравенство (x2 – 14х + 48) / (x – 7)2 < 0.
ОТВЕТ:
Вы смотрели: Самостоятельная работа № 16 по алгебре в 9 классе «Решение неравенств второй степени с одной переменной» с ответами. Дидактические материалы для учителей, учащихся и родителей. Алгебра 9 Макарычев С-16.
Вернуться к Списку работ (в ОГЛАВЛЕНИЕ)